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Ray scattering by an arbitrarily oriented spheroid:
2. Transmission and cross-polarization effects c>

James A. Lock

_d pc.,pt<,xTransmissionof an irbitrariiypolariz planewave by an arbitrarilyorientedspheroidin the
short-wavelengthlimitisconsidered_ ofraytheory.The _ransmittedelectricfieldisaddedto ,'c.s

_.hediffractedplusreflectedray-theoryelectricfieldthatwas previouslyderivedtoobtainan approxima-<-_/_
_ionto.the far-zonescatteredintensityin theforwardhemisphere.Two differenttypeso£cross-
polarizationeffectsarefound.Theseare(a)a rotationofthepolarizationstateofthet.ransmittedrays
from when theyare referencedwithrespecttotheirentranceintothespheroidto when they are
referencedwithrespecttot.heirexitl'romitand(b)a rotationofthepolarizationstateofthetransmitted

rayswhen theyarereferencedwithrespecttothepolarizationstateoft.hediffractedplusreflec,.ed
rays.o 1996OpticaISocietyofAmerica

1. Introduction

A number ofopticalpartic]e-sizlnginstruments, such

as the phase-Doppler particleanalyzer, measure the

diameter of small particlesby analyzing certainfea-

tures of their t'orward-hemisphere light-scattering

signature,t.2 For particlesmuch larger than the

wavelength oflight,forward-hemisphere scatteringis
well approximated by ray theory,which considersthe

diffracted,reflected,and transmitted rays that reach

the detector. For scatteringby a sphere, the ray-

theory far-zone scattered intensitycloselymatches

the results of Lorenz-,.'v[ietheory3,4 for particle-size

parameters as low as 30 and ['orscatteringangles as

large as 50°. As a resultof thisclosematch, phase-
Doppler particle analyzer calibration curves have

been based almost entirelyon ray t:heory,t._o.s.s

A basic assumption underlying the calculationof
opticalsizing-instrument calibrationcurves is that

the particlesbeing sized are spherical. A necessary
_rst step in evaluating the response of these instru-

ments to nonspherical particlesistohave an accurate

and easilyimplemented theory of lightscatteringby

such particles. Because the simplest nonspherical

particleisa spheroid, understanding scatteringby a

spheroid should be helpfulin determining the impor-
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tent features of scatteringby nonspherical particles
ingeneral.

There are a number of differentmethods for ex-

actlysolvingtheelectromagneticboundary-value prob-

lem of a plane wave scattered by a spheroidal oar-
title._-_t The numerical implementation of d_ese

methods, however, suffers from illconditioning for
size parameters g-rearerthan approximately 35 and
for large spheroid eccentricities.S.lt,w- The ray-

theory model of spheroid scattering isan attractive . ,-{
alternativebecause itisexpected to orovide a reason-,,};"

able approximation tothe solutionof the exact wave-) 3

scatteringproblem forparticle-sizeparameters be_ n-_
ning approximately where the numerical imple-J

mentar.ion of the exact methods starts becoming ill

conditioned. Ray scattering by a spheroid has al-

ready been applied to the analysis of the generalized

rainbow causticin the backward hemisphere, which

is caused by the confluence of a number of rays
making one internal reflectionwithin the spheroid

beforeexiting.t_-_9Ray-tracingprograms ['orscatter-

ing by an arbitrarilyshaped particlehave also been

deve!oped forcertainspecializedapplications.2O.2_

The purpose ofthispaper, along with a companion

paper2_-that is hereafter designated as part I,is to

describe scatteringin the forward hemisphere of an

arbitrarilypolarized plane wave by an arbitrarily

oriented dielectricspheroid by the use of ray theory.
[n part [ diffractionand specular reflectionwere

considered. [nthispaper transmission, which isthe

third oi"the physicalprocesses expected to dominate

scatteringin the forward hemisphere, isconsidered.
DiFfractionplus reflectionwas exacdy soluble in _he
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sense that the magnitude, phase, and polarizationof

the electricfieldof the outgoing rays were directly

--3_ expressibleinterms ofthe scatteringangles e and 4).
This isnot the case for transmission because of the

_4_ P _ complexity of both the refractiongeometry and the

0_" spheroid shape. If the plane wave is not incident
parallelto the spheroid major axis,another complex-

ity occurs as well. For this case the plane of inci-
dence of a ray atitspoint ofentrance on the litsideof

the spheroid does not coincide with the plane of

incidence at itspoint of e:dt. This leads to cross-

polarizationeffectsthat do not occur forscatteringby
a dielectricsphere.2_-2s For example, a transmitted

ray that was incident upon the spheroid with the
transverse electric(TE) polarizationwillexititellipti-

callypolarized,i.e.,with a mixture ofTE and trans-

verse magnetic (TM) polarizations. Similirly, the

TE polarization directions of the transmitted and

reflectedrays reaching an observer at the scattering
angles 6),¢ are rotated-with respect to each other.

The transmitted ray isadditionallyellipticallypolar-

ized when referenced with respectto the TE and TM

polarizationdirectionsofthe reflectedray.

Cross-polarizationeffectsalso occur forscattering

by a nonspherical particlemuch smaller than the
wavelength of light because of differencesin the

particle'spolarizabilityin different directions.-%.=7

Similar effectsalso occur for an optically active

particle.2s Cross-polarization effects originating

solelyfrom the geometry ofthe particlea/sooccur for

scattering by a dielectriccylinder at diagonal inci-
dence.°-s For scattering by a spheroid, the cross-

polarization intensity has been computed with the

exact solution to the wave-scattering problemJ °

Our purpose here is to demonstrate clearly and

explicitlythe geometric orion of the cross-polariza-

effects _the contextof ray theory.
tion o_

f-- T],_ b this paper proceeds as follows. Sec-
,_ tion2 presents a briefreviewofboth the notation and

the spheroid geometry that were described indetailin

part I. In Subsections 3.A.-3.C. the magnitude,

phase, and polarization vector of the transmitted

electricfieldare obtained. In Section4 these results,

are combined with the diffractedplus reflectedelec-

tricfieldobtained in part I,and the cross-polarization
effectsare examined. Last,inSection 5 the _i-

..... mp ..............diffractedplus reflectedplus
transmitted far-zone intensityand compar-e-ehn-re-
sultswith those obtained by theluseofother methods

i

2. Spheroid Geometry

Consider a plane wave of wavelength k, wave number

k = -7(-, (1)

£

and an=trular frequency _ propagating along the posi-
tive z axis of an xyz coordinate system fixed in the lab
reference frame. The electric field of the plane wave
is

O¢,

E_.¢ = Eo(cos X_2=+ sin Xd.)exp(ikz - i_t). (2) _t_

The plane wave is scattered by an arbitrarily oriented

spheroid. The transmitted contribution to the out- Cl<

going electric field in the tar zone at the scattering<_c"_4h..._angles 8, qb is of the form

iE0

E,_.,(O, ¢P) = _-_ exp(ika - i_t)S_._(@, ¢)

x exp[i_,,.,,,(e, ¢)]_,.,,,(e, ¢,).

In Eq. (3) R is the distance from the center of the
spheroid at the orion of coordinates to the observer;
St=,, is the magnitude of the transmitted eiectric
field, ignoring the Fresnel coefficients at the spheroid
surface; Sty,,, is the phase of the transmitted electric
field with respect to that of the reference ray o£
Subsection 3.D. of part l; and _=,, is the polarization
vector of the transmitted electric field and contains

the Freshet coefficients. The dielectric spheroid has
the real refractive index n > 1. There is no other
restriction on the numerical value of n. The surface

of the spheroid is Wen by

x "_" y'_ z"'-'

+ a 2 +b" = l, (4)a"

where the x"y"z" axes are attached to the spheroid.
The spheroid z" axis lies in the 0, _ direction with
respect to the xyz lab coordinate system, where 0

8 < _,/2 and 0 _ d_ < 2=. The description of.
scattenng by the spheroid is simplified considerably if
we use a second lab coordinate system x'y'z' rotated
with respect to the xyz lab system by the angle
about the z = z' axis. In this new coordinate system
the equation of the lit (i.e., lower) and the shadowed
(i.e., upper) spheroid surface is

}z'_Per wAr' cos _=' ab, = - r -_ -, (5)Z,o.., _ _(_ _ ",v_

where

fb ° a'_

w = sin O cos O_] , (6)

A = (b-" sin 2 O + a'- cos = B)_n, (7)

s = ,=, (8)

and where the elliptical coordinate r' and _' are
defined by

x' = Ar" cos _',

y' = Br' sin _', (9)

with0 _; r' < land0 < _' < 2.'=. The outward unit
normal to a point on the lit surface of the spheroid,
rh', and the outward unit normal to a point on the
shadowed surface, 4', are shown in fig-ure 4 o/" part I,
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Fig. 1. Geometry of the transmitted ray. The unit normal rh O' to

the surface at the ooint of entrance is in the .-r - _lto, _a direction

"_. wit.h respec= to the z', y', z' rotated lab coordinate system. The
portion o_" :he ray inside the spheroid has length sol and is in the

_tL_ gq'[ : 'Vo,, _1ol direction. The unit normal ti t' to the surface a: the point

_,xN "'_f_'v-- of exit on the shadowed aide of the spheroid is in the _gi, TlI

_; ..._.g_O ''_ direction.

and their" equations are _ven by equations 14 and 15
of part I.

A. Magnitude of the Transmitted EIectdc Field

The trajectory of a ray transmitted through the
arbitrarily oriented spheroid is shown in Fig. i. .421
quan:ities pertaining to the ray as it enters the
spheroid on the lit surface have the subscript 0, all

quantities pertaining to the ray inside the spheroid
have the subscripts 01, and all qiaantities pertaining
to the ray's exit from the spheroid have the subscript
1. .An incident ray is parameterized by the rotated
Iab frame coordinates r 0, and _o'. The unit wave
vector of an incident ray is

J;,o= a:'. (10)

The unit normal _o' to the lit surface at the point of
entrance of the ray has the spherical angles = - To, rio
with respect to the x'y'z" axes, i.e.,

rh o' = sin q'o cos riod/ + sin q'o sin _ofi/ - cos q'od: '.

(11)

o_

Using Eq. (!4) or'part I and Eq. (5) above, we obtain _/4_

ab

._ qo' sin _o'

tan rio ab (12)

A-'_qo' cos _o' + w

,tan-_=- To) = _qo' cos _o'

with

+ w + qo'sin_o'

(13)

ro

qo' = (I - ro'2) w2. (14)

These results are analogous to equations 21, 23, and
24 of part I for the normal to the lit surface at the

point of incidence of the reflected ray.

After transmission into the spheroid, the ray propa-
gates in the _o_, _o_ direction with respect to the
x'y'z' axes. The unit transmitted wave vector is
Wen by

/_o : sin _ol cos "qold,' + sin _ot sin _og2/

+ cos q'o,_2:'. (15)

It may also be written as _[

where

]_,o= n _o + - cos %0 _o', (_8)

Om = '['o (17)

is the angle of incidence o£ the ray at the lit surface.
The angle of refraction %0 is Wen by Shell's law

n sin Oto = sin q'o. (18)

A comparison of Eqs. (15) and (16) allows us to relate
the angles ofkto to the angles ofrho'. We obtain

_Vo_= _P'o- _o

"qo_ = "qo + =- (19)

The relation between rio_ and rio is expected on

physical grounds. The plane of incidence containing
k_o and .rho' makes an angle rio with respect to the x'

axis, so k,o mus= also lie in this plane. Furthermore,
Fig. 1 suggests that rho' and km lie on opposite sides of

the z' axis in the rio plane accounting for the differ-
ence o£= between rio and riot.

The trajectory of the ray inside the spheroid is
given by
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x' = x o' -- Sot sin V/ol cos rio ,

Y' = Yo' - sol sin V/or sin _o,

z' = zo' + Sol cos V/o_, (20)

where sol >- 0. The transmitted ray e_ts the spher-

oid on either its shadowed or its lit surface. By
combining Eqs. (5) and (20) we find that the distance
of travel of the ray inside the spheroid for either
possibility is

ab
s0_(cos V/ol + _ sin V/oLcos _o) - _- (I - to'2) _'2

ab
= - 7(1 - ri"-') lj=. (26)

Thus the sign of the left-hand side of Eqs. (25) and
(26) may be used as an indicator as to which side of
the spheroid the transmitted ray exists.

V/ol + w sin V/ol cos no) + _ qo' sin V/ol sin _o' sin _]o+ _ cos _o' cos _o

(cos V/or + w sin V/oxcos _o)2 + A_B 2 sm V/ol_sm _o + _-_ cos" _0_ " Z * _

(21)

The coordinates of the ray at its point of exit from the
spheroid are found by combining Eqs. (20) and (21) to
give

xt' = xo' - sol sin V/or cos "% = Ar t' cos _l',

Yt' = Yo' - Sol sin V/ol sin % = Br I' sin {1',

Zl' = ZO' + SOl COS "L[J'o1)

which is equivalent to

(22)

2r O'

rl'2= r°'2 B sol sin v/at

× sin _o' sin _o + ,_ cos {o' cos _o

( )+ B 2 sin'_ V/ol s in'_ _o + _ cos z _o , (23)

S01

ro' sin _o' - -_" sin V/ol sin _o

Let us assume/or the moment that the ray exits on

the upper or shadowed side. The unit normal dr' to

the spheroid at the point o£ exit has the spherical

angies V/t, _ with respect to thex'y'z' axes, i.e.,

fit' = sin V/L cos _=' + sin V/t sin _tdy' + cos V/_fi:',

(27)

Using equation 15 of part Iand Eq. (5) above, we then
obtain

ab
ql' sin _i'

tan_li ab (28)

A-'_.q_' cos _' - w

tan"-v/t = q_'cos_'- w + q_'sin_t' ,

(29)

tan _t' = (24) r l'
, $01 . qt' =

r o cos _o' - _--sin V/or cos _o (i - rt'2) t/2 (30)

For most commonly encountered values o[b/a and
n, the transmitted ray exits the spheroid on its
shadowed side. For _his case, combining Eqs. (5)
and (22) _ves

ab
So_(COS'{ro_+ w sin q'o_ cos _o) - .q- (I - to'-') _/"-

ab

= _-(1 - _'"-)_/_-. (25)

But for a spheroid with high eccentricity and large
refractive index, the point o£ exit or"the transmitted
ray sometimes occurs on the lit sure'ace. For this
case, combining Eqs. (5) and (22) gives

We next determine the angles of incidence and
retraction of the ray at its point ofexit. The incident-
unit wave vector at the point of exit is

k. = k,o. (31)

hs explicit form is @yen by Eqs. (15) and (19). The
angle of incidence O_ for exit on the upper surface is
given by

cos O:_= _i_'-/_,t

= cos V/o_cos x['t - sin Xl'o_sin q'_cos(_ o - v]_).

(32)

The transmitted angle 0_,isagain given by Snell's law
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sin 8:[ = n sin 0_1. (33)

Ifn sin 8_ > 1, the ray is incident upon this interface
past the critical angle for total internal reflection and
transmission does not occur in ray theory.. In actual-

ity, light waves are transmitted and are described by a
Fock transition. This effect is not modeled in this

paper.
For n sin 0a < 1, the ray is transmitted out of the

spheroid and its final outgoing unit wave vector is

k_L = sin @ cos(¢ - ¢)z2.' + sin @ sin(q _ - _b)_y'

+ cos @d:', (34)

which may also be written as

_,L = n]_ + (cos 0,L - n cos 0_)r_L'. " (35)

Comparing Eqs. (34) and (35), we find that the
scattering angles @, ¢ are given by

cos 6)

= n cos _v01 + (cos 0:1 - n cos e:l)cos q/L, (36)

tan

(cos On - n cos 0n)sin _I sin _ 1 - n sin _vol sin no

= (cos 0,1 - n cos Ca)sin _F_cos_l - n sin _Fo_cos _o

(37)

Thus _ven the coordinates r0' and _o' o£ an incident
ray, its scattering angles @ and @ are obtained by
combining Eqs. (12)--{14), (18) and (19), (21), (23) and
(24), (28)-(30), (32) and (33), and (36) and (37).

If the transmitted ray exits on the lower or lit side
of the spheroid, the unit normal rhL' is taken to have
the spherical angles -r - _, rl_ with respect to the
x'y'z' axes. For this case, the factors of -w in Eqs.
(28) and (29) should be replaced by +w, and the
factors of cos 1q in Eqs. (32) and (36) should be

replaced by -cos _tq.
These expressions for the scattering angles are

complicated because of the cumbersomeness of the
spheroid geometry and the cumbersomeness of the
geometry o£ refraction, and because the orientation o£
the spheroid is arbitrary. For arbitrary incidence it
is easily shown that the planes o£ incidence at the
ray's point o£ entrance into and exit from the spher-
oid do not coincide. Specifically, the first plane of
incidence makes an angles no with respect to the x'
axis. But the second surface normal ri( makes an

angle _ with respect to the x' axis. If no _ nL, the
two planes of incidence are not coincident.

If _o = _t, the two planes coincide and the entire
trajectory or" any given ray lies in a single plane.
Comparing Eqs. (12), (24), and (28), one can see that
this occurs only for w = 0 andA -- B corresponding to
end-on incidence, where the z" spheroid major axis
lies in the propagation direction of the incident plane

wave. For the end-on geometry

' = = = ¢ - _b - =. (38)

Equation (13) then simpUfies to

b

tan _/o = a qo', (39)

Eq. (21) simplifies to

cos _['ol + a qo' sin _Vol

,o,= - ...... b=---:-l'
Lcos°,o1- s,n,o1J

Eq. (23) simplifies to

[ So,' ]'/_"rt' = to,2 _ _2r0's°l sin _'o_ + --'7 sin2 _['oL
a a"

ro' sol sin 'Foil,-- a

Eq. (29) simplifies to

b

tan _/_ = a q_''

(40)

(4_)

(42)

Eq. (32) simplifies to

{}i_= _o_ + I*_, (43)

and Eq. (36) simplifies to

_) = 0n - _¢_. (44)"

Unfortunately, Eqs. (19) and (39)-(44) are still suffi-
ciently complicated that they cannot be analytically
inverted to obtain r0' as a function of @.

The inability to obtain r0' and _o' as functions ol"
and • prevents us from analytically evaluating the
magnitude of the transmitted electric field,

(k2A.Bro'l b _"
S, .... (e,¢)=\_siae/ ' (45)

in terms or'@ and ¢ alone, where

_ = 0_ _¢ " (46)

(See equations I7 and 18 of part I).
numerical evaluation of Eqs. (45) and (46) is dis-
cussed.

OK
In Section 4 the < _

lB. Phase of the Transmitted Electric Field

The trajectories of both the transmitted ray and the
reference ray are shown in Fig. 2. The reference ray "]_'_ 1

is described in detail in part I. Briefly, it propagates
along the z axis t.o the origin as if the spheroid were
absent. It _hen turns to the (_, q) direction and

propagates in that direction to the far zone. The
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Fig. 2. Trajec_.ories of the transmitted ray and the reference

ray. The spheroid entrance plane Es U'U', and the spheroid exit

plane is V'V'.

distance aR from the spheroid entrance plane 1717'to
the originis

ctR = z=i.', (47)

where Zmi,' is the lowest point on the spheroid
surface. The distance from the origin to the spher-
oid e.,dt plane VV' is (equation 41 of part t)

A z [cos@ - w sin E)cos(_ - 6)] 2 -_"_

+ sin-" @ _'£ + B_" (48)

The optical path length of the transmitted ray
between the spheroid entrance and exit planes is Cto +
nsoL + _L, where % is the distance from the entrance
plane to the ray's point of entrance on the spheroid's
lit surface and Bt is the distance£rom the ray's point
of exit on either the spheroid's shadowed or lit surface

to the exit plane. From Fig. 2, the distance _o is
given by

ao = _'R+ zo'(ro',_o'). (49)

The distance $t is determined as it was for reflection

in part I. The equation of the outgoing reference ray
is

z' = _a sin @ cos(q) - _),

y' = IIn sin @ sin(q_ - 6),

z' = 13Rcos G (50)

for i3n > 0. The equation of the plane normal to this
line at the point BR given by Eq. (48) may now be

constructed. This isthe exit plane W' of Fig. 2.

The intersection of this plane with the outgoing
transmitted ray

x' = Ar t ' cos _l' + _ sin @ cos(q_ - 6),

y' = Br,' sin _l' + B_ sin O sin(({) - 6),

z' = zf(rf , _,') + _1 cos O (51)

for St > 0 is then determined, giving

$z = _n - Art' cos _t' sin E) cos(q_ - 6)

- Br L' sin _l' sin E) sin@ - 6) - zl' cos E). (52)

The optical path length of the transmitted ray with
respect to that of the reference ray is then

L:rtns = C_O + n$Ot ÷ _1 -- C_R -- _R = ZO' + nSol

- Ar t' cos _=' sin E) cos(qb - d)) - Bq'

x sin _' sin (9 sin(q_ - 6) - zl' cos O, (53)

independent of whether zt' is on the shadowed or [it
side of the spheroid.

Each ray transmitted through a spherical particle

participates in two focusingcaustics32-34: (i) a spheri-
cal aberration cusp of revolution, which is also known

as the tangential caustic, and (ii) an axial spike caustic
on the cusp axis, which is also known as the sagittal
caustic. The cusp of revolution has its apex at the
paraxial Focal point and it extends through the sphere
surface to its interior. 34 The axial spike caustic
meets the cusp of revolution at the paraxial focal
point. Using van de Hutst's rule for equating the
number of -_,/2 jumps in the phase of a ray to the

number of caustic participations _5 and including an-

other fac_,_,r of -,-r/2 to compensate for the overall
factor o(_n Eq. (3), we obtain

2,-r 3=

as the phase of the transmitted ray.
For an arbitrary spheroid eccencricity and orienta-

tion the situation is considerably more complicated.
Nye's analysis of the one-internal-reflection rays for

side-on incidence _ gives a hint as to the complexity of
the focusing caustics of spheriods. We have not yet
[ully solved the caustic problem [or transmission
through an arbitrarily oriented spheroid. But in the

remainder of this section the complete solution for
end-on incidence is given first and then a few com-

men_s concerning the case of arbitrary orientation 3-']
are made. In Fig. 3 we show the evolution of the F'_____
transmission caustics as b/a is increased from 1.0 for
the specific example ofn = 1.333. Figure 3(a) corre-
sponds to transmission through a sphere, where the
cusp caustic of revolution points outward {'tom the

sphere. Figure 3(b) corresponds to b/a = 1.33.
The cusp caustic begins to retract into the spheroid
while continuing to point outward. Figure 3(c) corre-
sponds to
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Fig. 3 continued.

62 _2

I

a 2 rt 2 - 1
(55)

where all the incident rays focus at the point =s,a7

z' = (b 2 +'ilO- a'; -, (56)

independent of ro' and _o'. In Figs. 3(d)-3(h) the

interior cusp caustic of revolution points inward

toward the center of the spheroid. Thus the se-

quence in Figs. 3(a)-3(d) may be interpreted as

turning the cusp of revolution inside out through its

contraction to a point focus in Fig. 3(c).

Fig_ure 3(e) corresponds to -_s

6 2 n

-, = f, (57)_- /7. --

where the paraxial rays cross the z' axis at the orion

and exit the soheroid with the scattering angle @ =

0 °, Wing a forward glory. The forward glory is a

third focusing caustic for this case. For ba/a 2 only
slightly larger than n/(n - 1), the rays with small to'
exit the spheroid with a negative scattering angle•

As r_' is increased, the scattering angle further
decreases, reaches a relative minimum, as and then
increases, reaching O = 0° when

(b _ )_-?t 2-- ].

a 2 b2

= - _ (hs)
q°'+" b+'/a +" a"

/

For yet larger values of to', the scattering angle then

becomes positive. The rays between r o' = 0 and the

value ofr o' corresponding to the relative minimum oC

0 (i.e., ro 'mi") form a third and fourth focusing caustic.

These r-ayv-are a new cusp of revolution far outside

the spheroid and pointing inward and a new axial

spike caustic. The new cusp caustic evolves into a

fartzone transmission rainbow zs at _he minimum

•scattering angle Ore,, corresponding to ro '=i". For ro'
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between r0 'r_I" and the value implicitly Wen in Eq.
(58) only the new a.,dal spike caustic is formed. It

extends from beyond the second cusp point out to
infinity, where it evolves into the forward glory.

As b=/a _ is further increased, the new inward-

pointing cusp also beans to turn itself inside out by
progressing through a butterfly of revolution caus-
tic, _s as is shown in Fig. 3(f) and greatly magnified in
Fig. 3(g). Finally, if b=/a _- is sufficiently large, the
evolution of the butterfly caustic reaches completion,
and it becomes an outward-pointing cusp of revolu-
tion, as in Fig. 3(h). Although Figs. 3(a)-3(k) de-
scribe n = 1.333, the same evolution of the caustics
was observed For all _he other refractive indices

examined for the end-on spheroid geomewy.
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,4_ a result, depending on the values ofn, b2/a z, and
r_' for end-on incidence, a transmitted ray partici-
pates in either 2, 3, or 4 focusing caustics and
acquires a transmitted phase of either -3_/2, -2_,
or - 5_/2, respectively [including an additional factor
of" -_r/2 to compensate for the overall factor or" i in

Eq. (3) I. The number of caustic participations is
illustrated in the phase diagam of Fig. 4. The case
or" an oblate end-on spheroid presents no special
problem because the rays transmitted through it
resemble the rays _ransmit_ed through a thick Lens.
Each ray participates in only 2 caustics, a spherical
aberration cusp or" revolution and its associated axial
spike caustic. _a

If the z" axis o/" the spheroid is now _ilted with





0 I

1

PROLATE

S

b/a

Fig. 4. Phase-spacediagram for the causticsproducedby the
transmitted rays when to' and b/a are varied while the refractive
index n is hetd fixed. In region A there are two caustics, a cusp of
revolution pointing outward and an axiai spike. Along the line a_
corresponding to Eq. (55) these caustics conr.ract to a point
focus. [n region B there are two caustics, a cusp of revolution
pointing inward and an axial spike. In region C there are three
caustics, a cusp of revolution pointing inward and two axial
spikes.InregionsD,E,F.thereerefourcaustics.[nD theyare
twocuspspointinginwardand twoa.xJalspikes.[nE theyarean
inward-pointingcusp,abutterfly,and twoaxialspikes.[nF they
arean inward-pointingand an outward-pointingcusp,and two
axialspikes.The line_ correspondstotheforwardgloryWen
by Eq. (58)and theline_ isthetransmissionrainbow.The
cross-hatchedregionsdenotetheabsenceoftransmittedraysasa
resultoftotalinternalreflectionasinEq.(33).

respect tO the lab z axis for b2/a _- < n/(n - i), the
rotational symmetry that produced the degeneracy of
the axial spike caustic is lost and it deforms into a
four-cusped astroid caustic2 ° The cusp caustic also
loses its rotational symmetry. '= The combination of
the distorted cusp and astroid has an astigmatic
focusing character, and sections through the compos-
ite caustic resemble the evolution shown in appendix
2 of Ref. 39. Forb_-/a 2 > n/(n- l) the new cusp
and axial spike caustics deform into a second compos-
ite astigmatic focusing caustic as in appendix 2 of Ref.
39. For yet larger values of b/a, the butterfly of
revolution caustic evolves into a complicated struc-
ture that we do not yet fully understand. But in any
event, as long as the spheroid eccentricity satisfies
b2/a 2 < n/(n- 1), each ray participates in two
focusing caustics, and the transmitted phase shift for
an arbitrary spheroid orientation is given by Eq. (54).

C. Polarization of line Transmitted Electric Fieid

The incident plane wave is polarized so that its

electricfieldmakes an angle X with the.'caxis. The

polarizationvector of the incident plane wave with

respect to the x'y'z' rotated lab axes is then (equation
48 of part l)

_inc _-" COS(,_ -- (D)?"_x' "+" sin(x - d))d/. (59)

[n part I, the unit vectors in the TE and TM

Q

F{g. 5. TE and T.M poiarization directions for the rer'lectcdray

and the transmitted ray of Eq. (60) and Eqs. (61}---(64).respecuvely.

polarization directions were taken to be (equations 49
and 50 of part I)

TEi.== sin Oi._

-- i.° × ('_'× i._)
TEi,_ = sin e_,_ (60)

When considering the transmitted ray we define the
TE and TM polarization unit vectors to be the

negative o[` Eq. (60). The reason ['or this is as
follows. For scattering by a sphere, an observer in
the 6), q_ direction will intercept a reflected and a
transmitted ray that originated on opposite sides of

the sphere. This is shown in Fig. 5. These re-
flected and transmitted fields are added together to
form the total field at the observer. The addition is

most simply performed if each of the two individual
fields is decomposed into components in the same
directions; i.e., the outgoing TE and TM directions for

reflection are the same as the outgoing TE and TM
directions for transmission. This is ensured for ray
scattering by a sphere if the TE and TM directions for
reflection are given by Eq. (60) and the TE and TM
directions for transmission are Wen by

T_,o _;,ox _o'
sin 9io

TM:o = sin 0io (6i)

sin 9:o
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T--_,o _ x (k,ox n%'),
• = sin e:o (62)

T"Eil 4_i x 4,.'-- )

sin 8..I

T_Mit = _a x (]za x r_t' ) , (63)
sin 8.-I

T'E,_-/_,I x li_',
• sin On

T"-M,, = _,, x (k:, x 4t') , (64)
sin 8,i

as is shown in Fig. 5.
For scattering by a spheroid, the rays reflected and

transmitted in the e, • direction again in general
originate on opposite ends of the lit side of" the
spheroid. As a result, we use the TE and TM

polarization directions of Eqs. (61)--(64) for spheroid
scattering as well. For an arbitrary spheroid orienta-

tion with no "* ,] I, the two TE unit vectors TE,o and

TEa, which describe the ray inside the spheroid
referenced with respect to the 0 interface and the 1
interface, respectively, do not coincide. This is the
source of the first of" the cross-polarization effects in
the transmitted intensity. We derive this effect as
{.ollows. The incident-ray polarization vector of'Eq.
(59) may be decomposed into the TE and TM compo-
nents of Eq. (61)) Wing

_i.== cos _oTE_o + sin 7oTM_o. (65)

where

?:

Yo = X - 6 - _Io- :_' (66)

After transmission intothe spheroid,the polarization
vectorof'theray becomes

_0 = tTE 0 COS _,oT'-E:o ÷ tTM 0 sin "foT-'_'M,o(67)

where tTE0(O..O) and :TM0(8..0) are the Fresnel coeffi-

cients for transmission corresponding to th._e angle., of

incidence (}..o. As menr-ioned above, the TEED, TM,o

and the TE_l , TM a polarization vectors are rotated
with respect to each other because the 0-interface and
the 1-interface planes of incidence do not coincide.
Specifically, by substituting Eqs. (11), (15), and (27)
into Eqs. (62) and (63) we obtain

TE,o = cos _olTEa + sin _olTMil,

TM_o = -sin -_otTEil + cos _oITM, L, (68)

where

sin _['_ sin(rio - _q_)

r.an Aol = sin '['Lo cos _[zt + cos _{'_osin _['t COS(T10-- "qt)

"_ .It"

E ' _"

rans

T ( _ + TM

TE sin h a, TM _. cos L%o,

Fig. 6. Conuibutions to the transmitted electric field. The

conr.ributions proportional to cos _oL are the polarization terms

char. describe transmission by a sphere or end-on sphermd. The

contributions proportional to sin Ao, are _he 6_t type of cross-

polarization _erms.

(69)

if the ray e.xits the spheroid on its shadowed side.

[fit exits on the lit side, the {'actor of cos ke t in Eq. (69)
is replaced by -cos _tq. The polarization vector of
the ray incident at the point of exit on either the
shadowed or IICside of the spheroid is then

_t = (ire°COS _0 COS d0t - tTM°sin "tOsin Ao_)T'Ei_

+ (tTE0COS YOsin Ao_ + tT sin Yo cos Aot)TM. _. 0
• v

(70)

Finally,the polarizationvector of the outgoing ray
afteritexitsthe spheroid is

_..l= (tTE0tTE I COS "_,0COS L_0! -- tT,,10ZT#Sin 70 sin '.&o|)T"E:[

+ (tTE0tTM t COS YO sin ,Ao_

' tr,_ttTM&4sinVO COS Ao_)TM,_, (71)

where t_(Oa) and tr._,z(Sa)are the Fresne[ coe_- __

cients{'ortransmission corresponding to the angle of _"
incidence0:_. Again, %_ must be lessthan the critical

angle for totalinternalreflectionin order for the ray
toe_- the spheroid.

4. Cross-Polarization Effects _/',A pictorial representation of Eq. (7I) is given ....----_
in Fig. 6. For scattering by a sphere, _he only
possibilities are TE polarization in producing TE
polar_zation out and TM polarization in producing
TM polarization out. For scattering by an arbi-
trarily oriented spheroid, these two possibilities are
weighted by cos 2o_. The cross-potarization possibili-
ties of TE polarization in producing TM polarization
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Fig. 7. Contributions to the reflected plus transmitted electric
field. The contributions proportional to cos _Rt are the polariza-
tion terms that describe scattering by a sphere or end-on spheroid.
The contributions proportional to sin ,..vmare the second type of
cross-polarization terms.

1 _ ,4

out and TM polarization in producing TE polariza-
tion out are weighted by -_sin ±ol. For scattering by
a spheroid with end-on incidence, _o = _t and Aol = 0,
which eliminates this cross-polarization effect.

The second cross-polarization effect in forward-

hemisphere scattering by aAtransparent spheroid is

due to the fact that TE_f, TM_r of equations 54 and

55 of part I are rotated with respect to TErt, TM:t of
Eq. (64). This may be shown as follows. Substitut-
ing for k.,1 and r_t' in Eq. (64) and comparing with
equations 54 and 55 of part I gives

A A A

TEa = cos AmTE..,e + sin A._ITM_,-,
"7,=.

T.'V--[_t= -sin "A.IT"E._r + cos 'x._tT"M_r, (Tff)

where

tan 'AR_

sin '[q sin((D - d> - rll)
p

sin O cos 'V_ - cos O sin _[Jtcos(<D - _ - _z)

(_)
_2

if the ray exits the spheroid on its shadowed side.
[fit exits on _he lit side, the factor of cos x[tt in Eq. (7_
is replaced by -cos 'Vt. This cross-polarization el- "
fect is pictorially represented in Fig. 7. For end-on
incidence Eq. (38) gives c_ - ¢b - _1 = = and ARt = 0,

eliminating this cross-polarization effect as well. 1"_
At this point we may combine Eqs. (3) and ( _w_th

equation 81 of part I to obtain the diffracted plus
reflected plus transmitted electric field in ray theory.
We relate this electric field to the amplitude-scatter-
ing matrix _.43

defined by

lEo [S_ SdLcos

79
In Eq. (-7"2.)the incident-field column vector

sin

is referenced with respect to the TM polarization

component (i.e., sin _.) and the TE polarization compo-
nent (i.e., cos :) of the incident ray that will be
reflected into the 6), • direction. The angle 7 is

given by equation 53 of part [, i.e.,

3_r 3_,

-T=×-,-T.
_E

The scattered-field column vector

S sin7 +Stcos

is referenced with respect to the polarization direc-

tions T".M_- and T'E_¢. But the polarization vector of
the transmitted ray was calculated in Subsection 3.C.

with respect to the ray's own TE and TM polarization
directions of Eqs. (63) and (64) rather than with
respect to the reflected ray's TE and TM polarization
directions. The transformation of the incident direc-

tions of Eqs. (60) and (61) is

A A A

TE.o = cos _TEi.c - sin _-TMi.=,

TM:o = sin _TEi._ + cos D-TMi,¢, (_'_

where _ _
P

P-=_o-','==+n-qo =r,+_I_-,b-_ (7_
7n,

For end-on incidence,Eq. (38)gives_ = 0.

The scattering matrix of Eq. (%_ may then be
written as "_q

[ cos ARt sin 'An,]
"*"Sir°.,exp(iSt.�,)L_sin 'AR_ cos Amj

"tv.u_ 0 ][ cosAo! sin'Aot]
x L 0 tw)JL-sin aot cos ao,j

x . 0 tT_OjL-sin D. cos f_t "

The various terms in Eq. (_r6"_ have the following
interpretations. Reflection is diagonal in the re-
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flected-ray TE and TM polarization basis while diffrac-
tion is diagonal in any polarization basis. For trans-
mission, the rightmost matrix converts the incident
reflected-ray-polarization basis to the incident trans-

mitted-ray polarization basis, and the leftmost matrix
converts the final transmitted-ray polarization basis

back to the final reflected-ray polarization basis.
Transmission at each interface is diagonal in the

transmitted-ray TE and TM polarization basis, and
the middle matrix converts the 0-interface transmit-

ted-ray polarization basis to the 1-interface transmit-

ted-ray polarization basis. Explicitly, the compo-
nents of the scattering matrix are

Sl(e, q") = Sdie_ + S_,f exp(iS_,f)rTz + St_a.,

x exp(i8,r,a,)(tTE°tTz t COSdXRt COS_0t cos D.

- tTZ°t.:M t sin ARt sin Aot cos I2 - tT,,,l°tDr,t

x cos AR_ sin'Aol sin'12 -- tTMOtTMt sin ARI

x cos Aot sin _), (7-73

S?(e, _) = Sdiet + S,,f e.xp(iS,.f)rzM + S_,,

X exp(iS;ra_)(tTMOtTM t COS ARI COS _01 COS

-- t,rM0tTS t sin ARt sin Aot cos _ - tTS0tTM t

x cos Am sin Aot sin Ft - tTE0tTE t sin ,xm

x cos Aol sin _), (.78)

,5'3(69, _) = Su-.., exp(i_U-aa,)(tTM0tTM t COS ARt COS A0i

× sin 12 + tTEOtTMtCOS ARt sin Aot cos

+ tTZ°tTZtsin ARt COS Aot COS

-- tTM0tTE t sin ARt sin Aot sin .o), (.7_ 1

s,(e, q_) = St,_,exp(iA,_.,)(-tvz°trz I cos ARt COShot

X. sin _ -- tTM°tTE t COS'-km sin Aot cos

-- tvMOtT,_t_ sin ARt COSAot cos

+ trz0tTM 1 sin A._t sin.Aot sin Fl). (89")

For a spheroid that is tilted away from end-on
incidence by only a small amount, the first transmit-
ted terms of S_ and S_. are comparable to the dif-
fracted and the reflected terms, and the last three
transmitted terms are second-order corrections; i.e.,

they have two terms in the sine of a small angle.
Similarly the first three terms of S_ and $4 are first
order in the sine of a small angle, and the last term is
of the third order.

Finally we obtain theI_y-theory scattered intensity
by multiplying Eq. (7-_Z)_o_its complex conjugate after

inserting Eq. (.7_.z _ The resulting expression is rather
long. But using the shorthand notation,

DE -- Sdiff COs 7,

D M = Sdi ff sin %

_E = _refrTE COS "y,

RM = S=,frT.,asin 7,

TEE = StranstTg0tTE t COS "V,O'

TEM = Stran/tTZ0tTM I COS "(0,

T._tE = StranstTMOtTE I sin Vo,

T.w._t = SwanstTMOtTM t sin _o,

_3

we obtain

The various terms in Eq. (82) ha_e the,f_oJlowi_n'Ig
a . &'. ah7 . ,

physical interpretations. The second hne 9rt_ne m&-
vidual diffracted, reflected, and transmii_ed intensi-
ties {'or scattering by a sphere or an end-on spheroid.
The reflected and transmitted intensities in the (9, ¢

direction depend on the polarization state (E or .___.._. , _"
the incident beam. The th/rd--zrvi fc_s are ;_.:.._.
the diffraction-reflection interference, the diffraction-

transmission interference, and the reflection_-_t.r.a,na.- _<i,_ -
mission interference {.or scattering by a sphere or _,,<
end-on spheroid. The .fif+._h!tn_-_'.: the cross-polariza- _,,,_

tion contribution to the transmitted intensity, wh_h
_,2k C

is due solely to the rotation of the TE,o and TE,t .--=
polarizauon directions. For scattering in the near-
forward direction by a spheroid tilted a small amounc
from end-on incidence ;best two terms are second-

order corrections because sin _o_ is small and because
the TE and TM Fresne[ coefficients are nearly equal
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, _Z_, "t_ _.-

%_, /

for small angles of incidence. _ The _ through

__ linesare the cross-polarizationcontribution_o
_he reflection-tramsmissio%l interference. The m-_h

throughtm_ lines are the cross-polarization
contribution to the diffraction-transmission interfer-

ence. For scattering in the near-forward direction

by a spheroid tilted a small amount from end-on
incidence these are also second-order corrections,
either because of sine-squared factors or because of a
single sine factor and the near equality of the TE and
T.N[ Fresnel coefibcients. Because diffraction and
reflection are both diagonal in the reflected-ray basis

[see Eq. (.7-6_]7[_here is no cross-p01arized diffraction-
reflectioninterfer_ce. Thecross-polarizedcontribu"
tions to Eq. (_Z_ecome comparable to the second

through_ lines for a highly eccentric spheroid
f tilte_-d-_bstantially away from end-on incidence and

forrays with largeangles ofincidenceatthe points of

entrance to and exitfrom the spheroid.

5. Computation of the Scattered Intensity

It has already been shown in part [ that the diffracted
•" plus reflected electric field is directly expressible in

terms of @ and O. But because of the complexity of

both the spheroid shape and the refraction geometry,
the transmitted electric field is not directly express-
ible in terms of e and O. This suggests the following

strategy for computing the ray-theory intensity of Eq.
5!(_. We first generate a dense _id of to' and _o"'

values, i.e., 'Aro' = 0.005 and 'A_o' = 1°. Then for
each to', _o', we compute the scattering angles {9 and
_. We then numerically perform the derivatives in

Eq. (46) and obtain the magnitude, phase, and polar-
ization direction of the transmitted ray. For each

to', _o' we also check whether the ray is totally
internally reflected by the use of Eq. (33). If it is not
totally in_ernally reflected, we test whether it exits on
the shadowed or the lit side of the spheroid with Eqs.

(25) and (26). Knowing e and cD for each transmit-
ted ray, we then calculate the reflected and diffracted
electric fields {'or those scattering angles, and finally
we compute the scattered intensity ofEq. (P23"._.9

In order to test our numerical procedure, first b = a
was set in the computer progv.am, and the results
were compared against ray scattering by a sphere as
Wen by the analytical formulas in Refs. 3 and 4.
The results matched exactly. For scattering by a
sphere or an end-on spheroid, Eq. (46) reduces to

,go .15

=0-fro"

The agreement between our computer program and
the numerical implementation of the analytical formu-

las for sphere scattering in Refs. 3 and 4 verifies that
we have chosen our _id oft0' values to be fine enough_c
to perform the numerical derivative in Eq. (/_3_ _
accurately. Our computed result ['or b = a = 10.07
_m also closely approximate_ theory, as is shown

in Fig. 8. Also shown in Fig. 8 is the generalizedeikonal approximation. _ The eikonal approxima-
tion has been shown to bean accurate approximation

in the short-wavelength limit. It has the feature
that it slightly underestimates the peak intensity of
the reflection-transmission interference s_ructure for

20* < e < 50* forn = 1.33.
We next considered the end-on spheroid case ,k =

0.6328 _m, n = 1.33, b/a = 1.5, a = 10.0 _m, X = 90°,
and O = 0* and compared our results with those in

figure 8 of Ref. 21, in which the ray-theory intensity
was calculated with another method. Again _he

results matched exactly# _ We also compared our
results with the generalized eikonal approximation
for a = 10.07 _.m. _7 The comparison is shown in Fig.

9(a). For e < 30* ray theory and the generalized
eikonal approximation _ve similar results, with the
generalized eikonal approximation again slightly un-
derestimating the reflection-transmission interfer-
ence for e > 100. The critical angle for to_al inter-
nal reflection occurs at a scattering angle of

approximately {9 = 38*. Thus ray theory is expected
to be inaccurate for t9 >. 33* because of our neglect of
the Fock transition _s in the transmitted electric field.

This neglect may be the cause of ray theory becoming
out of phase with the eikonal approximation for @ >
25*.

In Fig. 9(b), ray theory is compared with the
generalized eikonal approximation for side-on inci-
dence with ,k = 0.6328 ,_m, n = 1.333, b/a = 1.5, a =

10.071 _.m, O = 90*, ¢ = 00, and × = 90* for scattering
in the @ = 0* plane. The cross section of the

spheroid in the xz plane (i.e., • = 0") resembles an
oblate spheroid with b/a = 0.667 in the end-on
incidence configuration. For this configuration and
¢ = 0", each transmitted ray participates in two
focusing caustics. Again ray theory and _he general-
ized eikonal approximation We similar results, with
the generalized eikonal approximation slightly under-

estimating the reflection-transmission interference
for I5 ° < 19 _< 40*. The critical angle for total
internal reflection occurs at a scattering angle of

approximately 19 = 55 ° . Thus our neglect of the
Fock transition causes ray theory to be inaccurate for
6) > 50*.

I_ Fig. 10 ray theory is compared with the exact
solution of the plane-wave--spheroid problem with
the method of Ref. 49. The comparison was made
for end-on [Fig. 10(a)l and side-on [Fig. t0(b)l inci-
dence for ,k -- 0.6328 _m, n = ]..333, b/a = 1.5, a =
3.021 _m, and X = 90* for scattering in the ¢ = 0°

plane. This corresponds to a spheroid-size param-
eter of 2_/X = 30.0, which is at the lower end of the

re@qn ofapplicability ofray theory. In Fig. 10(a) _he
comparison is good for 19 < 30*, and in Fig. 10(b)
the comparison ts good for e < 50*. We consider the

general agreement between our results and the gener-
alized eikonal model for 2.-:a/X = 100 and the exact
solution for 2-:talk = 30 as an additional check of the
correctness of our method.

[t is of great interest to compute the cross-
oolarization contributions to the scattered intensity

of Eq. (2r21".%'¢Unfortunately, this canno_ be done
reliably until a complete solution to _he problem of

i

.t
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quote some of their results before publication. I also

thank J. P. Barton of the University of Nebraska,

Lincoln, for providing me with the exact scattering

data quoted in Fig. I0.
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